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20. Abstract

thermohydrodynamic structure of each vortex is being developed, and then the
conditions for transition from the moderately intense to the very intense
vortex are to be sought. The practical motivation is to make progress toward
the highly desirable, but very formidable,task of being able to anticipate
which tropical storms or minimal hurricanes will evolve to supertyphoons.

Since the one-cell storm is believed to be largely described already for
present purposes, description of the two-cell vortex is the current challenge.
In particular, the properties and location of the eye wall are sought, since
the potential-vortex and surface-inflow subdivisions of the structure of a
very intense vortex are in hand.

The modeling proceeds from basic thermohydrodynamic principles. Non-
essential geometric detail, as well as association of conclusions with the
details of particular parameterizations, is being avoided as much as possible.
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SUMMARY

Analytic modeling of well-organized rotating convective storms is

being taken to elucidate the evolution from a moderately intense one-cell

vortex, characterized by low-level pressure deficits on the order of one

percent of atmospheric pressure, to a very intense two-cell vortex, char-

acterized by low-level pressure deficits on the order of ten percent of

atmospheric pressure. The physical distinction between the two stages is

the insertion of a dry, compressionally heated, nonrotating, central down-

draft of originally tropopause-level air in the more severe case. The quasi-

steady mature description of the thermohydrodynamic structure of each vortex

is being developed, and then the conditions for transition from the moderately

intense to the very intense vortex are to be sought. The practical motivation

is to make progress toward the highly desirable, but very formidable

task of being able to anticipate which tropical storms or minimal hurricanes

will evolve to supertyphoons.

Since the one-cell storm is believed to be largely described already

for present purposes, description of the two-cell vortex is the current

challenge. In particular, the properties. and location of the eye wall are

sought, since the potential-vortex and surface-inflow subdivisions of the

structure of a very intense vortex are in hand.

The modeling proceeds from basic thermohydrodynamic principles.

Nonessential geometric detail, as well as association of conclusions with

the details of particular parameterizations, is being avoided as much as

possible.

I. INTRODUCTION

(a) STATEMENT OF THE OBJECTIVE

The principal contribution still to be made in forecasting intensity

of tropical storms is to identify the observable(s) that permit one to

anticipate (as much in advance as possible) which incipient storms will
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become hurricanes and which will not.#

Very roughly about half of all tropical storms, one-cell vortices

extending vertically from sea level to torpopause and radially many hundreds

of miles, transform into two-cell vortices (hurricanes) (Fendell 1974).

The transition involves insertion of a column of relatively diy, clear,

nonrotating, originally tropopause-level, compressionally heated, slowly

recirculated air at the center of the vortex. Accordingly, the region of

intensely swirling, very cloudy, torrentially raining updraft becomes

displaced to an annulus. An "eye" has then been inserted within an "eyewall".

A formidable vortex, with peak swirl of perhaps not 100 mph and horizontal

pressure deficit at sea level of a few tens of millibars (the tropical

storm, as defined here), has transformed into a terrifying vortex of possibly

over 200 mph peak swirl and a pressure deficit of 100 mb or more (the

hurricane, as defined here). The question arises, what telltale observable

accessible to aircraft, satellites, etc., would permit one to anticipate

the transition from tropical storm to hurricane? Of course, the intensity

of a tropical cyclone is not a simple monotonic increase with time to a peak,

following by a simple monotonic decay; thus, there may be several transitions

back and forth between one- and two-cell structure, suggestive of partial

insertion, then removal, of an "eye" (Carrier 1971a).

The initial goal of this project is the formidable one of delineating

the structure of a well-developed two-cell vortex, to complement the

relatively well-understood structure of a one-cell vortex. Before subleties

of the transition can be detected, the "stable equilibrium states" should

be characterized in sufficient quantitative detail.

Normally quantifying any details about structure in tropical cyclones

# Gray (1979, p. 51) comments: "Tropical cyclone forecasters generally
agree that skill at operational forecasting of tropical intensity change
is nearly zero." He notes that trying to relate intensity to cloudiness
configuration (as observed by passive satellites) is subject to signifi-
cantly erroneous results, and furnishes inadequate detail. It may be noted
that the gustiness of winds is not discussed, since treatment of the
variance seems premature when prediction of the mean is still not possible.
Gustiness factors for tropical cyclones (ratio of peak transient wind to
wind sustained over a scale of one minute to five minutes, depending on
the correlator) range from 1.0 to 1.8 in the literature (Brand et al 1979).
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is highly uncertain because proper formulation of turbulent diffusion,

cummulus convection, amd radiative transfer is unknown. These three

important small-scale phenomena may well not have satisfactory representation

in terms of macroscale variables, so even the ve-y attempt at such

parameterization is doomed at the outset. Yet such parameterization is

the essence of all contemporary tropical cyclone modeling, and any new

undertaking could just augment the plethora of almost totally uncorroborated

speculation. Why is there cause for optimism?

(b) AN APPROACH TO TWO-CELL STRUCTURE FOR AN INTENSE ATMOSPHERE VORTEX

The answer concerns a little ingenuity, a little insight, and a lot

of luck.

The ingenuity lies in the fact that, whereas almost all contemporary

hurricane modeling entails direct numerical assault on all-inclusive

mathematical formulation, this project utilizes an alternative, approximate

analytic treatment as much as possible. While other liabilities may be

cited (e.g., finite-differencing introduces spurious effects not present

in the physical formulation), there is one particular difficulty with

direct numerical computation of special relevance here: a physical effect

important anywhere in the flow field must be retained everywhere in the

flow field. Thus rather arbitrary models for turbulent diffusion, cumulus

convection, and radiative transfer are present, possibly to vitate results

throughout the flow field. In the alternative approximate aralytic approach

examined here (Carrier 1970; Carrier, Hammond and George 1971), the hurricane

is subdivided logically into those parts in which different physical

phenomena dominate; when a particular subdivision is treated, only that

subset of the full equations that retains the locally dominant physical

processes is solved. Such a subset is usually more tractable to solve, and

parametric variation easier to examine. A composite global solution is

synthesized from solutions to the subdomains by demanding appropriate

continuity of dependent variables and their fluxes at interfaces.

The little insight referred to above is the deduction that, under the

high-speed portion (only) of a severe rotating storm, the nonlinear "surface"

inflow layer is inviscidly controlled; only in a very small sublayer

(immediately continguous to the ground) of the inflow layer does diffusion
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enforce the no-slip boundary condition (Carrier 1971b; Burggraf, Stewartson

and Belcher 1971; Carrier and Fendell 1978). The diffusive sublayer

becomes thinner, and the outer inflow layer thicker, as one moves in toward

the center of the vortex. Why this is so is subtle, but it is familiar

in nonrotating contexts to aerodynamicists in the form of the following bit

of well-known empiricism (e.g., Launder 1964): a near-wall diffusive layer

becomes thinner in the direction of a favorable (i.e., accelerating)

pressure gradient. At sea level, the pressure is high at the lateral

edge of an intense vortex and the pressure is greatly reduced at the center,

such that a strong positive pressure gradients exists; thus, the low-level
swirling influx (that erupts up the eyewall) is predominantly inviscidly

controlled as it proceeds toward the hurricane center.

Now, radiative cooling is important only in the outer and less cloudy

portions of the storm (Fendell 1974), and the simple well-defined model of

moist-adiabatic ascent* suffices to describe the locus of thermodynamic

states in the eyewall. In the previous paragraph it is pointed out that

the low-level flow entering the eyewall is nondiffusive. This is the crucial

ingredient of good fortune that joins ingenuity and insight. Two of the

three small-scale processes that are the bane of the numerical modeler

(specifically, turbulent diffusion and radiative transfer) do not enter

significantly in the portion of the hurricane flow field critical to

quantitative analysis of two-cell structure, and the third process (cumulus

convection) can be formulated locally in a well-accepted, well-defined form.

The upshot is the following good fortune: one of the few questions

about hurricane structure that can be definitively formulated by contemporary

modeling happens to be one of the most important. Specifically, that

question is, what is the balance of forces and thermodynamic states in

the central regior of a tropical storm that permits two-cell structure

to arise as an alternative to one-cell structure?
* Water-vapor-containing air rises, expands and cools dry-adiabatically
unrcil saturation. Thenceforth, it continues to ascend such that saturation
of water vapor is maintained at the local thermodynamic state, the condensed
excess water substance falling out so that it is unavailable for re-evapora-
tive cooling. (Hence the process cannot be reversed.) The originally low-
level, convectively unstable fluid undergoing this ascent is taken to rise
too quickly to entrain any ambient air, and hence remains unmixed with cooler
or drier air. In fact, of course, some mixing with nearby ambient air occurs
and some re-evaporation into this unsaturated mix also occurs, but the no-
mixing case is realistic enough to provide valuable insight.
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(c) THE BOUNDARY-VALUE PROBLEM

For axisymmetric inviscid swirling flow in which a radial influx

becomes an axial upflux, the boundary-value problem is well-defined.

Especially if one confines attention at the outset to low altitudes such

that incompressibility suffices, the formulation is available in texts

(e.g., Batchelor 1967). Angular momentum is constant on streamlines,

continuity is enforced, advective and centripetal accelerations balance

the radial pressure gradient, and the total pressure head is constant

across streamlines (Carrier, Dergarabedian and Fendell 1969). The annulus

is bounded on one side by a free streamsurface that demarcates the eyewall

interface with the eye, and on the other side by a free streamsurface

that demarcates the eyewall interface with the outer vortex. The position

of both these bounding streamsurfaces must be found in the course of

solution, under enforcement of statements concerning the continuity of

pressure. One result sought is the displacement of the eyewall from the

axis of symmetry, which is also the axis of rotation. It is anticipated

that this displacement ultimately increases with height.# The mathematically

#The increasing displacement of the eyewall from the axis with altitude

seems likely under conservation of angular momentum, since density
decreases with altitude. Conservation of mass also suggests that the
cross-sectional area of the eyewall annulus increases with altitude. The
fact that the eyewall tilts radially outward with increasing height is
suggested further by certain satellite photographs of hurricanes
(Fendell 1974). This outward-sloping behavior may seem just another
passing observation, but actually it bears directly on perhaps the most
controversial question dividing hurricane models during the last three
decades. That question concerns the amount of augmented sensible and
latent heat transfer (above ambient tropical autumnal transfer rates)
from ocean to atmosphere that is necessary near the center of a hurricane
to sustain the hurricane (Carrier, Hammond and George 1971). If the
eyewall were vertical, augmentation of enthalpy transfer from sea to
air would have to be an order of magnitude greater than conventional
rates (Malkus and Riehl 1960); pressure deficits achievable under
compressional heating in the eye could not serve as an explanation of
intense swirl speeds observed in the eyewall, and instead oceanic heat
transfer would have to explain the density reduction that hydrostatically
integrates to low pressure at the base of the eyewall. Such an increase
in oceanic transfer seems mechanistically unlikely. If the eyewall
slopes radially outward, no such augmentation in enthalpy transfer is
requisite, because low pressure at the base of the eyewall could be
explained by density reduction through compressional heating in the
upper troposphere.
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elliptic character of the boundary-value problem reflects the physical

fact that streamwise and transverse derivatives, and streamwise and trans-

verse velocity components, are of comparable magnitude; there is no single

preferred direction of change. Indeed, frankly, a great deal of time has

been unsuccessfully expended by the investigators seeking a valid mathematical

transformation that would convert the elliptic problem into a parabolic

one; an axisymmetric parabolic problem is more readily solved precisely

because it possesses a single dominant direction of change. Such a

transformation seemed attained, but it ultimately proved a chimera, and

now the investigators must come to grips with the nonlinear elliptic

problem.

Some preliminary insight is attainable at the sacrifice of detail by

using an "integral method" (Finlayson 1972). Roughly, one "forces" a

parabolic-likecharacter on the problem by taking transverse averages and

then seeking streamwise variance of these averages from an appropriately

simplified boundary-value problem. Such gross resolution can suffice as

preliminary guidance only, and ultimately greater resolution is required

for present purposes.

(d) ON SIMILARITIES OF SWIRL-STABILIZED-COMBUSTOR FLOWS AND HURRICANE
DYNAMICS

The meteorologically motivated swirling-flow studies being discussed

should be of value in aerodynamically stabilized continuous combustors.

Such combustors are used in face-fired furnaces (industrial boilers, whether

fueled by oil or coal) and in gas turbines. In fact, the dual-purpose

pertinence of the proposed research is such that the matter is now developed

at some length.

For fuel efficiency, low pollution, and flame stabilization, combustors

with recirculatory zones are quite common (Beer and Chigier 1972). For

premixed fuel and air, such a reversed-flow domain lets one flow the fresh

charge at speeds in excess of the flame speed, without having blow-off.

For diffusion flames (unpremixed fuel and air), one can retain the reactants

longer in the combustion zone if either reduced volatility or slow gas-phase

reaction rates (relative to flow rates) poses a problem. One may view the

mechanism by which the recirculation zone succeeds in bringing continuously
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introduced fresh charge to its ignition condition in several ways. The

recirculatory "bubble" retains heat and hot radicals to raise the charge

temperautre and to instigate chain-branching chemical mechanisms. Also,

the stagnation-point-generating recirculatory "bubble" reduces flow speed

relative to reaction rate, with the result that less incompletely-burned

reactant escapes; such "lost" reactant is not only economically wasteful

and polluting, but energetically unfavorable, because some sensible heat

is convected away without exploitation of the full chemical exothermicity

possible.

Recirculation may be achieved in the wakes of bluff bodies introduced

into the flow, but these entail large pressure losses in high-speed flow,

and in general introduce materials-survival and coke-deposition problems.

In recent years, abrupt area expansion of the flow, secondary air jets,

and other adverse-pressure-gradient-generating designs have been implemented

to achieve recirulatory flow aerodynamically, i.e. without introduction

of physical obstacles into the flow (Syred, Chigier and Beer 1971). However,

of prinicpal interest here, is the use of swirling flow at the inlet, either

of both the fuel and air stream, or at least of the air stream alone, to

aid achievement of recirculatory flow in the reaction zone of the combustor.

In general in swirling-stabilized combustors, the reactants enter the

combustor with axial (i.e., streamwise) momentum and with angular momentum;

the ratio of the latter to the former is defined as the swirl ratio and

traditionally denoted S (Beer and Chigier 1972). [Some authors (e.g.,

Hall 1972) define an equivalent angle of swirl, , by the definition tan: -

(v/w), where v denotes the swirl component of the velocity, and w denotes

the axial component.] Typically, for S < 0.6, the swirl causes some

streamline spreading and central pressure reduction, but the rotating is

too weak to induce recirculation. For S > 0.6 or so, there may be toroidal

recirculation zones, but the flow in the immediate vicinity of the axis of

rotation may be downwind at all axial positions. For S > 1, an "equivalent-

bluff-body", or bubble-type, recirculation zone often lies about the axis

of rotation. This large-swirl case is the one of interest here. In

furnaces, the "bubble" can be open-ended in that the recirculation zone

extends from near the inlet down the entire axial length of the chamber,

with the result being a nearly columnar flow field (Khalil, El-Mahallawy

and Moneib 1976). 8



For such large-swirl cases, one has a flow that is well described in

time avarage by an inviscid incompressible axisymmetric swirling model

(Bossel 1973). In fact, the relevant quasilinear second-order elliptical

partial differential equation is precisely that which is there believed

pertinent to the two-cell severe atmospheric vortex. The vortex-breakdown

analogy between severe-atmospheric-vortex flows and recirculatory combustor

flows seems more than a possible superficial resemblance to be noted in

passing. The equation is usually expressed in cylindrical polar coordinates,

and involves both axial and radial partial derivatives, and is not fully

specified until flow conditions pertinent at the inlet and at the outlet

are specified (Leibovich 1978).

That the mathematical formulation of the strong-swirl-stabilized

furnace flow is so similar to that of the two-cell atmospheric vortex

is, in restrospect, obvious, because the physical phenomena have appreciable

similarities (Carrier, Fendell and Feldman 1980). In both instances, there

is an annular flow displaced from the axis of symmetry, in which rapidly

swirling flow moves axially "downwind" (the "eyewall"). Enveloping the

axis there is a "filling" flow whose axial direction of movement is partly

reversed to that of the annular fluid. This reversed-flow fluid in the

"bubble" (or "eye") may be swirling, but the principal interest is in (1)

ascertaining the location of the interface distinguishing annular (eyewall

fluid from bubble (eye) fluid, and (2) details of the annular flow outside

the bubble. (What flow there is inside the bubble may be intricate and it

is probably not critical to ascertain the.details for many purposes.)

It is not the objective here to deal exhaustively with similarities

(and also distinctions) between recirculatory bubble-type swirling furnace

flows and two-cell severe atmospheric vortical storms. Nevertheless,

several points may be added. First, the outer boundary on the annular

flow is prescribed in the case of a furnace: in general it is the impervious

outer solid wall of the inlet-diffuser-dump geometry. For the atmospheric

vortex, there is no lateral surface, and a second free bounding surface

must be identified in the course of. solution: it is the (nonsolid) boundary

between the eyewall and outer vortex of the hurricane. Thus, the atmospheric-

vortex case has a free surface bounding the eyewall on both its near-axis

and outer limits; the atmospheric-vortex case is more difficult in this

9



regard. Second, whereas the swirling in the annulus is often of rigid-body

type in a combustor, an analytically simple special form that reduces the

quasilinear partial differential equation to a far more tractable linear

equation, the swirling in the annulus in the atmospheric vortex is likely to

be of a more complicated, less tractable nature. Nevertheless, the total

pressure head is invariant from one streamline to another in the atmospheric

vortex, while it is almost certainly not invariant in the furnace. While

these characteristics are somewhat off-setting in the complication that they

entail, the atmospheric vortex case ends up the more challenging. Third,

in both flows there are heat releases: from chemical exothermicity in the

furnace, and from the latent heat of condensation in the hurricane. In

neither case is this heat release by itself important enough to necessitate

introduction into the dynamics of compressibility for a physically useful

quantification. However, the atmospheric vortex extends from ground level

to tropopause, and over this scale of altitude compressibility enters;

of course, a furnace certainly has no comparable extent. Nevertheless, if

one confines attention to just the very-near-ground portion of the eye/eyewall

interface in a two-cell vortex (a portion referred to as the turnaround or

corner, in that low-level swirling influx becomes swirling upflux), incom-

pressibility suffices for the atmospheric vortex as well. Fourth, one of

the challenging matters in the elliptic flows that characterize bubble-type

furnace flows and atmospheric vortex flows is appropriate characterization

of the "outlet" flow. Elliptic flows require specification of flow constraints

at all "boundaries"; such specifications at the inlet and the lateral

"boundaries" are straightforward to state physically even if sometimes

awkward to manipulate mathematically. However, one has less experience

concerning what is appropriately specified at the exit plane, such that the

formulation is neither underspecified or overconstrained. It is to be

remembered that the exit plane of the annular fluid may be the entrance

plane of the core ("bubble" or "eye") fluid, and the mathematics must be

"informed" about the properites of such mass as enters the computational

domain. In the case of a hurricane it is known that the well-developed

eye extends from tropopause to virtually sea level and contains virtually

nonrotating air, whereas an open-ended reversed-flow domain in a swirling

furnace may have appreciable swirl within the air entering at the downwind

extremity.

10



2. A BOUNDARY-VALUE PROBLEM FOR THE TURNAROUND

An inviscid incompressible steady axisyrrunetric model of the turn-

around region in a severe vertical vortex is adopted, in cylindrical

polar coordinates with origin at the ground on the axis of rotation (and

of symmetry) (Fig. I).

The azimuthal, radial, and axial velocity components (v*, u*, and w*,

respectively), in view of conservation of angular momentum and of conser-

vation of mass, may be written [I* = r1*V* , where r*, is the (given) radius

of peak swirl in region I, and where V* is the (given) value of that peak

swirl]

(r*v*)2 : r*2 F(p); (1)

-ru* = r*h* a3 (2)

r*w* r r*h* a (3)IT r* "

Super asterisk denotes a dimensional quantity; no asterisk, a dimensionless

quantity. The cylindrical radial coordinate is r*; the axial coordinate, z*;

the maximum height of the surface inflow layer, h*; the streamfunction for

the secondary flow (involving velocity components u*, w*, only),p; the

function giving distribution of angular momentum with streamfunction, F.

Conservation of radial momentum is (p* is density)

u* Lu*- + w* au*- + r* 2 F(f) (4)

3z* arFkpd r* 3

Bernoulli's equation is

U*2 r.2 2 +p

u*2 +W*2  P + r*2F( ) + g*z* -
2-+ (5)

2 2r* 2r1 pT

11



in (5) the Bernoulli constant is taken as universal for all streamlines
emerging from region II in view of the known relation

(u*(r*,z*)] 2 + * )

and the fact that the pressure above hydrostatic is axially invariant for

z*<h*, within the conventional boundary-layer approximation. Within

the cyclostrophic approximation,

a - P' (p*/2)v* 2 = (p*/2)(r*2/r*2)'  (7)

where p* is the ground-level ambient pressure (given).

From a crude treatment of the turnaround, to be published elsewhere,

(h*/r*) : 0.2 for relevant values of r*, V*, where typical (given) values, for a
severe tornado, are r* : 160 m, V* 100 m/s. In any case, h* and r* are

taken as known. Thus, in addition to its use in (2) and (3), h* is employed

to nondimensionalize the independent variables:

x = 7rr*/h* , y = 7tz*/h*. (8)

Subtraction of the radial derivative of (5) from (4) gives

X (1 ~x + + = 0, (9)

where subscripts x and y denote partial differentiation. The swirl profile

F() is known from conditions holding at x - x, - Trr*/h* = r/h. It is known

from published solution of region II that F is a monotonically increasing function
of p, such that F(O) = 0 and F(I) = 1, where the datum o(x>xl,O) =0 is adopted,

12



and from (2) and (8),

f1x) f U(xl,) d4 E 1 (10)

0

where u a u*/V*, and, for completeness, v v*/V*. Clearly, for F linear
in ,, (9) becomes Poisson's equation, and for F quadratic in t,, (9)
becomes Helmholtz's equation. Although, from known results for region I,
such simple forms for F( ) are not detailed replications for (r*v*)/r* of
interest, still their tractability urges their adoption.

The pressure along the streamline that separates from y = 0 at x = xI
remains at p*, for the model of a nonrotating "eye" isobaric at altitudes
at which gravity plays no role. Then, from (5), since F(O) = 0,

( x)2 + ( = onw=0 . (11)

The pressure along the streamsurface p = I, which passes through the
circle x =xi, Y = 7r, should be consistent with the pressure in the potential-

vortex region; hence

2

= 1+ ~ (xl) (12)

from the cyclostrophic balance, where the nondimensionalization

- p* (13)
p*V*2
2d

has been adopted.. From (5), (12), and (13), with neglect of the gravitational

term, since F(I) = 1,

2 + 0 on q,=I (14)
x y
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This condition merely states that there is no contribution from the secondary-

flow velocity components u*, w* to the pressure field, where region III

interfaces with region I.

Equations (9), (11), and (14) constitute the boundary-value problem

of interest, when supplemented by a relation for F(p), obtained from pre-

viously executed analysis of region II. By (1), (2), (6), and the fact

that w(xl,y) 0, the relation for F(W) gives implicitly an expression for

,(xlY), 0 < y 1 !, with which to initiate the analysis (see below). Finally,

it is anticipated that p(x,y), as given by the boundary-value problem is

periodic in y; this periodicity reflects the fact that the formulation must

be revised after completion of about one cycle. More explicitly, it is

anticipated that the locus of any streamline, say p = 1/2, as y increases,

decreases to a minimum value of x, then increases in x to recover its

initial value x = xI and to achieve a peak value in x, before decreasing

back to x = xI to begin another period. It is to be expected that the

undulating flow so generated will be unstable somewhere along its trajectory,

but our present job is to find that flow and the stability problem is

deferred until that is done. Of particular interest are the amount by

which v exceeds the value associated with x = xl , = I, and the values of

x and 0 at which the maximum occurs.

For explicitness, a rough characterization of the function q(xl,Y),

0 < y < 7, is now presented. In the largely inviscid portion of region II,

(6) may be rewritten as

u2 (x,y) + v2(xy) (xl/x)2  (15)

From (1), (2), and (15), one obtains

-{lly 2 [1 -1 2-U(xly) y (v(xI y) [ F( , (16)

14



where G < F() 1 1 for 0 <_ I. Thus, (xl,y) is given by

du (17)

f= . { [() 1/2

where - I as y - i (cf. (10)). For F( ) = /I,

- Y - I = j* v 2 (xly) = (18)

For F(V) = ( /I)2

= 21/2sin(y/2), I = 21/2*v2 (xly) = sin 2 (y/2) (19)

In fact,

v(xly) 1- exp (- -y) , c 3 (20)

might be more realistic, but is far less tractable.

In summary, if

V(x,y) = O(xy) G'(v) = GI N (21)

Then the boundary-value problem is, for 0 < <1,

x(l  x ) + iyy + G'('y) = 0 ; (22)

42 + 2 (x on T2, + 2IF 0 on y 1 ; (23a)

x y x y

15



, (Xl,y) given, with i periodic in y. (23b)

One might consider interchanging the roles of the dependent

variable ' and the independent variable x, and using perhaps some technique

within the framework of the method of weighted residuals, perhaps with

multigrid procedures (Brandt 1977), to extract the desired information

from (21) - (23). However, first, alternative procedures are used to study

(21) - (23).

3. TREATMENT OF A SEPARATED LAYER WITHOUT STRUCTURE

A momentum balance in an axisymmetric separated boundary layer without

structure is examined. The thin sheet (or "eye wall") is the demarcation

between any "eye," isobaric at pressure p1, and a potential vortex with

radially dependent pressure given by (12). At r* = r*, p* in the sheet equals

that in the "eye" (Fig. 2).

Henceforth in this section the symbol r*(z*) denotes the outside

surface of the "eye wall" without structure. At the point A, given by

[l.*(z*), z*] , the principal radii of curvature are 1I + [r*'(z*)]2 3/2/r*"(z* )

the radius of curvature in a plane containing the axis of symmetry and the stream-

line on which point A lies, and r*(z*)i1 +[r*'(z*)]2}1 / 2, the radius of

curvature in a plane perpendicular to the streamline on which point A lies.

Super prime denotes ordinary derivative with respect to the argument of the

function. The velocity component in a plane containing the axis of symmetry

is denoted q*, while the velocity component (swirl) in a plane perpendicular

to the axis of symmetry is denoted v*. Thus, if t is a unit vector in the

plane containing the axis, and e is perpendicular to t and refers to the

azimuthal component ina cylindrical-polar-coordinate system, then

v* = q*t + v*e. (24)

16



The force balance perpendicular to the thin sheet at [r*(z*), z*]

equates the pressure gradient consistent with a potential vortex outside

the sheet, to the component of acceleration perpendicular to the sheet.

There are two contributions to the acceleration, each involving the

square of a velocity component over an appropriate radius of curvature:

= r * ri *rl (25)
d )d [1 + (r*') 21]/2 r*[1 + (r*') ]'/2

where h* represents a coordinate running across the sheet.

Variations in velocity occurring across the sheet are not resolved

(r* M f*y*):

*2d * y2V2f dh* 1

S .dh* (26)

/q dh* * J dh* = 2 B*

B* _f[a! )] dh* (27)

The potential- vortex form of v* is used in the definition of A*.

17



From these definitions and from (12). to an accuracy that serves

current purposes,

V*2 / r 2  A*V*2r*2  B*V*2r.,,

- r = r*3[1  (r* )2 11- 1 +  (r ) 2 (28)

The following nondimensionalization is introduced:

r* =Z* 2A* 2B*= r_ - 1'Z' , =r--'r (29)
r' ~r* r

If A* = (h*/2), B* (h*/2), seemingly reasonable values, then

h* =• h*=

-7--h , -; r--h (30)

Under (29), (28) becomes (a,6 specified)

1 CL F '

T)1/2 3/-2 x

x i j 3 (1 + x12  ( + X.2)

I+ 7,2 1 x2  + I12 23/2

"- Ti (7j--) (1I+  ' (31)

In this translationally invariant equation, it is taken that i(i-= 0) = 1.

It is shown below that x is periodic in z. Solution is sought for positive

and negative z, where the boundary conditions are

18



i(o) = ( (32)

I'(O) = ", given const. > 0. (33)

The boundary conditions preclude odd or even solution for x in z. Sought

are x , the largest value of x, which occurs where T' = 0, and x , the

smallest value of X, which also occurs where 7' = 0. In that _" < 1,

there is "overshoot" of the swirl, and, from (12), there is decrease of

pressure from the value that holds in the "eye", i.e., in 0 < r* < r*(z*);

it is reiterated that the magnitude of the swirl overshoot and pressure

decrease are of particular interest.

While numerical integration of (31) - (33) is required ultimately,

some preliminary treatment is helpful. Since (31) is translationally

invariant in z, phase-plane analysis is introduced (Fig. 3 ):

d 7( d27 ) = ddr = rdP (34)

di dz dzdx d7

Thus,

3/2 1/2 4. 1 . (35)

I+-1 -3 -2 +X-

The slope is infinite at = 0 and is zero where

+/2 3 = 0; (36)

S3(1 + F2 )

19
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the intersection of the curve of (36) with the P = 0 ray is given by

a + 1 0 (37)

x* x*

where x = 1 for a = O, x. > 1 for a > O. For 1 >> a > 0,
x = 1+ (a/2) -(3a2/8) + .

Although the following development is not pursued to the extent of

obtaining results, it may be worth noting that if

H(X) = (1 + 2)-1/2 (38)

then (35) becomes

=aH 1

-IH - E 1 (39)

If
__ -2 (40)

then

dH - -12 =T- 3/2  (41)

or

H (t1/2 1~ ( )1/2 (i+ ep()ef ~ 1/2

+ E exp (~)(42)

20



where E is a const. of integration. From (38), (40), and the definition

T= (dx-/dz-), one may write formally

di = 1. +[.(=)]2I1 /2 - 1'/2_

dz+ = z(43)dY d-

Thus,

di d([-1/2(44){ [1 H 1 ]-2)1/2

where H(T) is given by (42).

For the special case a = 0. i.e., no swirl, multiplication of (35)

by x' yields

(- + a (45)(I + m')/ - '1

where the constant of integration has been written as (/m), with

m (1 + ,2)1/2 (46)
0]

for consistency. It is recalled that 7'(-dT(O)/dz) is a given positive
0

finite constant. Inspection of (45) reveals that i'is maximum at T = 1,
so (0 + /2 is the maximum value of (1 + i,2)I/2, whence the symbol m.0"

At 0' 0,

B a8 .]112 +f 1/2~) (47)x 1 ~(1- t ±[- F (1 1 11/2m

For 7; -0 so m - 1, x-merge to unity; this case involves a vertically

separating surface inflow layer, and hence no overshoot. For x - so

m , x ± remain bounded:
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x- 1 + [2 + (48)

this case involves effectively horizontal inflow of the separating surface

inflow layer, and leads to the minimum value of x for fixed 3. For

3 = 0.1, =x 1.37 and X 0.73; for x 0.2, x 1.56 and x 0.64.

The plausible range of 8 = 0(0.2), from a crude analysis of the turnaround

to be published separately; it is recalled that . is associated with in-plane

motion. These results suggest what proves to be a general trend: x

decreases as x' and 8 increases.

Finite values for o indicate finite swirl; increasing ,. yields larger x-

and smaller overshoot. From results of numerical integration, for finite ,

x± approach finite values as x. for fixed E. For the plausible values0
= 3 = 0.2, for x' = 2, 5, 10, the corresponding values of x = 0.77,

0
0.72, 0.70. Hence, swirl overshoots in the range of about 10% seem plausible,

but no more; estimates that swirl in the turnaround exceeds the swirl at

x = 1, z = h (in terms of the definitions of (29)) by about 100% (Lewellen 1977)

are excessive according to this analysis. Further results are given in

Table 1 and graphical presentation'is given in Figures 4 and 5.

4. REFORMATION OF THE BOUNDARY-VALUE PROBLEM

A change of variables from (r*,z*) to , where the angle - gives

the orientation in the (r*,z*) plane of the streamline relative to a line

parallel to z* = 0 (Fig. 6), is developed for the boundary-value problem

introduced in Section 2. The restriction to constant-density flow is

relaxed.

The streamfunction w* is redefined by

p*q*r* sin® = -  (49)

p*q*r* cosO = . (50)

Here r* again denotes the conventional cylindrical radial coordinate at

which the velocity is to be calculated, q* is the velocity in the (r*,Z*)

plane, and n* (introduced below) is the distance normal to the streamline.
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The quantity q* sinO is the vertical velocity w*, and the quantity -q* cos-

is the radial velocity u*.

The change of variables from (r*,z*) to (,*,9) requires that both

(D/ar*)z* and (0/az*) be expressed in terms of (a/au*)e and (a/ac).,

where the subscript is held fixed. Consider a function f* that depends

on r* and z*, and, therefore, on i* and 0. One may write

df* d * + (2--). do

= ( [ . dr* + dz* + hf* ds

= \(.5) o*q*r* sine dr* + p*q*r* cosO dz*] + dC. (51)

Henceforth, the quantity being held fixed is no longer explicitly written,

for brevity.

The usual transformation rules apply, i.e.,

®z * , o 0 r %* r 0o %:
r* z* r* z r* *

(52a,b,c,d)
where

j* = - r*G* , (52e)

and subscript here denotes partial differentiation.

Division of (51) by dz* and letting dz* - 0 as dr* is held fixed at zero,

one obtains

f*z* = f*,#* Q*q*r* cos(O + f* 0 0z* ; (53)

similarly,

f*r* = f* P* Q*q*r* sin® + f* Or. (54)
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I.

From (52), (53), and (54),

f'z* Q*q*r* cosO f** + r** . r* * fC

Z*,,i

**q*r* sinG f** - z* Z * f* (56)
rr * * r * . r ,

In particular, the directional derivative in the r*,z* frame, with direction

normal to a constant * line, is

f*n* = f*r* sinC + f*z* cos:; in

*P*q*r* f*coso - z, sin

f* r* z* , f (57)

If one adds (55) with f* replaced by z* to (56) with f* replaced by r*,

one gets

Z* cosO + r*,* sinG = q . (59)

The quotient (4d) (4c) gives

z*= r tano (59)

Also, by use of (58) and (59) to eliminate z* in the expression for J*

given in (52e),

J* = -r*,* r*® tanG - r*p*q*r cos® r* * tano

q~r* cos(60)
= (60)
Q*q*r* cosO"

Furthermore,

r*,. cosO- z*- . sinG = r* * cos [cos r*,* tanO] sinC

r*,* tanO (61)

- cosO - .(61

24



Substitution of (60) and (61) in (57) gives

r* le tanO
f* I~~r~f* _OsG- o*g*y.* *q*r* coso ffn* r* 0*~ ~* 0

Q*q*r*f*,,* - 1*q*r* r * r + in f

Thus, the conservation of momentum in the direction normal to a surface

const. is given by

o~~* * -P Qq r*, .~.p* + *in
0qrq r r:7

,*vsinO p*g* cos,-
- r* -+ r* - Qg cos

[The middle term on the right-hand side is obtained thus:

- *q *2  3(D +~q2 1 + p~ * coso

where s* is distance along a streamline. The principal curvatures of a

surface P = const. in the (r*,z*) plane are thus seen to be ( C)/3s*) and

sinO/r*.J Rearrangement gives

-v*2 sinO + g*cosQr* (r*,* - in ) *

r coso (62)

If one divides (58) by cosO, differentiates the result with respect to C

and then subtracts from this result the derivative of (59) with respect

to ~,one obtains

* C os 2o(~* cO) 1 (63)

25



The pertinent equations include an equation of state, a (pseudo)

adiabatic relation #
, conservation of angular momentum

r*v* - F*(p*) , (64)

and Bernoulli's equation

fV + + + g*z* = ( *) , (65)

where F*(p*), G*(p*) are implied by the boundary conditions and are taken

as specified. Equations (59), (62), and (63) supplement this list. There

are seven equations for the seven unknowns q*, v*, r*, z*, p*, p*, and T*.

Each unknown is a function of * and 0.

The appropriate initial conditions are

0* -t , r* rt , F*(ip*) given, G*(p*) given on 0 (= 0,

0 < 1P* < (66)max

At 0 = (o 0, 0 < k* < max, one anticipates, for r* r,

q,2 + v,2 • V,2 , (67a)

P* - p* 0g*z* (67b)

The boundary conditions for small z* are

p*(I*= 0,0) " P (68)

P* * - v* W , ,1 *2
p(pmax~ 1) 2 max' )-v2

2- 2 ( *max, ) (69)

2 ( *max' ;) rI IJ

The reference here is to a relation among the thermodynamic variables

obtained from the second law of thermodynamics. In the absence of conden-
sation of water vapor, the dry-adiabatic relation suffices.
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All quantities with subscript unity are given constants, m is calculable,max
and 7* = r* V*, with V* given.

In Figure 6, P* is denoted Q*d*' and the possibility that the boundary-

value problem possesses a reflection-type solution at low altitudes is

explored schematically.

With the boundary-value problem now displayed in ( *,®) coordinates,

it is moot whether this formulation is preferable to that in (r*,z*)

coordinates.

5. GENERALIZATION TO A VARIABLE-DENSITY MODEL--FURTHER COMMENTS

For a formulation valid through the depth of the tropopause, it is

useful to review tenets of the modeling at this point, since greater detail

concerning the thermodynamics is to be added.

When the state of the ambient atmosphere is known, and when the

circulation 7* of the potential motion is given, one can calculate the

inviscid, quasisteady motion which is consistent with any specified central-

core pressure distribution, the logical extremes of which are (1) the dry-

adiabatic condition consistent with the total enthalpy of the ambient air

at sea-level, and (2) something weaker than the moist-adiabat corresponding

to that same sea-level condition.

The general character of the configuration is given in Figure 7. In

region I any radial and/or vertical motion is supposed to be so small that

it is ignorable in the dynamic balance. The angular momentum ?* is pre-

scribed, most simply as a constant; ultimately, interest centers on the

case where r* is a function of z*. Region II is the boundary layer which

transports swirling fluid inward; r* is the radius at the pressure in the

potential vortex at ground vortex is the same as the prescribed pressure

at r* = 0, z* = 0. Region III contains updraft fluid and its state trajec-

tory is dynamically moist adiabatic; i.e., the total enthalpy is constant.

Region IV is nearly stagnant and contains either updraft air (nearly moist

adiabatic) or recompressed air from z*, the altitude at which, in the
0

ambient, the total enthalpy is the same as that at ground level. Typically,

that ambient enthalpy is of the character depicted in Figure 8.
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It has already been noted in Section 4 that the boundaries of region

III are not known; the coordinates r* and z* are not particularly well

suited to a successful analysis. On the other hand, if one defines a

streamfunction " and a "velocity direction 0", the boundaries are fixed

in the (9*,®) plane and it may be useful to formulate tne dynamic balances

in that framework.

In writing the equations for the conservation of momentum for the

inviscid flow of an air, water-vapor mixture, one usefully adopts the

hypothesis that no supercooling occurs, but that once the temperature

drops far enough to imply saturation, water condenses at precisely the

rate needed to keep the vapor at the equilibrium saturation level.

The angular momentum of each particle is conserved, and the total

head is preserved on each streamline. Momentum conservation normal to a

streamline and geometric relations that supplement these statements were

derived in Section 4.

Finding the locus of thermodynamic states that characterize the moist

adiabat based on sea-level ambient conditions; assignment of an altitude to the

tropopause, denoted z* in Fig. 8; and determination of the pressure distri-0

bution with height in region IV, denoted p*(z*) in Fig. 7 -- these steps

are standard (Fendell 1974).

Finding the pressure in region I compatible with the ambient atmos-

phere, p*(r*,z*), is now discussed. If one discards the subscript unity,

P'r* = P*V* /r*

P*z* = Pg*

hence, g*p* = p* *

*Pr* =  r* z* =  r* PZ*

If one seeks solution in the form

P*(n*)-P*[m*(z*) - s*(r* I
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one obtains (if prime denotes the ordinary derivative)

p* (*{g*s*'(r*)r*3 - P*2(z*)m*'(z*)] = 0

i.e., without loss of generality,

s*(r*) = 2 r

m*(z*) Z* z
0 rdz'm*(z*) :' p.2 (z,)

For the special case of a vortex in region I that is invariant with

altitude, r* = const.,

m*(z*) = z*/r
2

the choice of p*(n*) which matches the ambient atmosphere at r*-2 << 1 is

Sp* .bient * + F*2/(2g*r*2)]P* ambet 1 .2 I

[In this approximation the ambient formally is taken to hold at an infinite

radial distance, but the discrepancy from a match to an ambient at a value

of (r*/r*) of only ten results in an error of about merely one percent.]

For the somewhat more plausible case of a vortex, the angular momentum

of which decreases linearly from a value of F* at sea-level to zero at the
0

tropopause z* = z
0

* =

0

such that at r* ,

zn*Z* = -'

Thus a solution of the first-order partial differential equation p*(n*),

any function of n*, also satisfies the boundary condition,
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p*(n*)-> P*mbient (z*) for r* -> =, if one takes as the function

F*2 (z -Z)
** 1

2q*r2z
Pambient r*2(* Z "

Ll + 02g 2 2 2

In region III the pressure on the streamline contiguous to

region IV must match the specified p*(z*) in the core, and the pressure

on the streamline contiguous to region I must match the pressure in the

potential vortex pmbient[m*-l(m*(z*) - s*(r*))]. These statements consti-

tute the boundary conditions. At r = r*, 0 < Z* < h*, the initial value

of each dependent variable is specified on the basis of the known solution

for region II.

Obtaining the solution of this formulation of "eye wall" with struc-

ture, throughout the depth of the troposphere, is the next goal of this

on-going investigation.
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Table 1. Numerical Results for Extrema of the Turnaround, from Integration
of the Initial-Value Problem (31)-(33).

S Q/9 7,(0)1 70€ '.o4, .0i

0.1 0.1 0.0 2.0 0.791 0.789 1.264 1.266

0.0 0.1 0.0 5.0 0.754 0.761 1.326 1.329

0.0 0.1 0.0 10.0 0.742 0.738 1.348 1.352

0.0 0.1 0.1 100.0 0.732 0.727 1.366 1.372

0.0 0.2 0.0 2.0 0.718 0.714 1.392 1.397

0.0 0.2 0.0 5.0 0.671 0.664 1,489 1.497

0.0 0.2 0.0 10.0 0.656 0.647 1.S24 1.533

0.0 0.2 0.0 100.0 0.644 0.632 1.553 1.565

0.1 0.1 1.0 2.0 0.820 0.789 1.295 1.266

0.1 0.1 1.0 5.0 0.777 0.751 1.348 1.329

0.1 0.1 1.0 10.0 0.762 0.738 1.366 1.352

0.1 0.] 1.0 100.0 0.750 0.727 1.381 1.372

0.1 0.2 0.5 2.0 0.748 0.714 1.422 1.397

0.1 0.2 O.S S.0 0.695 0.64 1.510 1.497

0.1 0.2 0.5 10.0 0.677 0.647 1.541 1.533

0.1 0.2 0.5 100.0 0.663 0.632 1.567 1.566

0.1 0.5 2.0 2.0 0.876 0.846 1.212 1.181

0.1 0.5 2.0 5.0 0.841 0.818 1.244 1.223

0.1 0.5 2.0 10.0 0.928 0.808 1.2S4 1.237

0.1 0.5 2.0 100.0 0.818 0.800 1,264 1 250

0.2 0.1 2.0 2.0 0.845 0.789 1.325 1.266

0.2 0.1 2.0 5.0 0.796 0.751 1.369 1 329

0.2 0.1 2.0 10.0 0.779 0.738 1.384 1.352

0.2 0.1 2.0 100.0 0.765 0.727 1.396 1.372

0.2 0.2 1.0 2.0 0.774 0.714 1.452 1 397

0.2 0.2 1.0 S.0 0.716 0.664 1.530 1.497

0.2 0.2 1.0 10.0 0.695 0.647 1.558 1.533

0.2 0.2 1.0 100.0 0.678 0,632 1.581 1.566

0.2 0.4 0.5 2.0 0.685 0.615 1.652 1 606

0.2 0.4 O.S S.0 0.617 O.SSO 1.789 1.772

0.2 0.4 0.5 10.0 0.594 0.528 1.838 1.832

0.2 0.4 0.1 100.0 0.578 0.509 1.877 1.M7

Notes: Results for (i% .0 are from (40). Also, i for x' 1 00 are within 2%
00of values for x" , for a,3 studied.
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IV I
u* "'I VO,v PO re p* 1°

h° *
u. 2 + 2 "V . 2 , wo M 0

U° " VO, v9 " 0.p° plO

0 rl"" - r& 

Figure 1. Schematic, not to scale, of an inviscid model of the turnaround
region of a severe vertical quasisteady axisymmetric vortex.
The "eye", region IV, is isobaric at pressure p*, over the vertical
extent of interest here, where p* is also the pressure at r*-r*,
z*uh* (because the pressure is approximately invariant across
the surface inflow layer II). The "eye wall", region I1, is demar-
cated by two streamsurfaces, *(r*,z*) - const. (the position of
each to be determined), encompassing the mass efflux from region II.
It is recalled that a potential vortex holds in region I.
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dz* "

II

t pz I -l-0

r* vII rj* V* , re

I2

*P 0Pj + Zi

dr*

0 r1 -fr-
h

Figure 2. Schematic of the location of an inviscid "eye wall without
structure" demarcating the interface between an isobaric non-
swirling "eye" at pressure p* and a potential vortex. The sheet
representing the "eye wall" Aas thickness h* o 0; in the turn-
around region, its displacement from the axis, as a function of
height above the ground plane, is denoted r*(z*).
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I-

I - QUALITATIVE SKETCH OF
I - AN INTEGRAL CURVE

I 3

I -

L--

Figure 3. Phase-plane properties of equation (35), where P = (di/diz), with
x the dependent variable (x > 0) and z the independent variable.
Isoclines of zero and infinite slope are noted. At 7 = 1, the
distance from the axis of symmetry at which the surface inflow layer
separates, a finite positive slope is adopted. For a > 0, x, > 1;
for a = 0, x, = 1. The sketched trajectory (solution curve) is
a limit cycle (closed curve indicative of periodic behavior). The
periodicity is not of physical interest.
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tt

SEPARATED INFLOW LAYER

OUTWARD EXCURSION

INWARD EXCURSION

V** p.2)

pe 

,P,*

h" -- SURFACE

INFLOW
LAYER

0

Figure 6. This schematic of the inward, then outward, excursion of the
separated inflow layer with structure, indicates the bounding stream
surfaces p* = 0 and * = C. The in-plane radial-axial flow
speed is denoted q*; the swirl about the vertical axis, v*. The
inward excursion need be solved for streamfunction-inclination angle
e = 0 to e = (?r/2), since the solution fore = (r/2) to e = Tr
may then be obtained by reflection. An analogous statement holds

for the outward excursion. The "eye" is isobaric at pressure p*,
but the potential-vortex pressure varies with radial position
r* as noted.
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Figure 7. Another schematic of the postulated four-part model of the struc-
ture of a mature intense hurricane, of radial extent r* and axial
extent z o (the tropopause). The potential vortex in region I is
here ascribed modest axial ariation, such that the associated
pressure field is denoted pl(r*,z*). The low-level swirling
influx (region II) grows to thickness h*, and separates to form
the "eye wall" (region III); the flow speed independent of
swirling is denoted q*, and the inclination of the secon ary (i.e.,
radial and axial) flow relative to a horizontal plane is charac-
terized by angle 0. The pressure variation in the "eye", region
IV, is entirely axial and is denoted pg(z*); for the idealization
of a completely dry, cloud-free, fully developed eye, this varia-
tion is determined by dry-adiabatic compression of tropopause-
level air.
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Figure 8. A typical profile of the total static temperature (H*/c*) over the
ocean in the equatorial trough and in the subtropics (1200n mi from
the equatorial trough), as a function of pressure p* and altitude
above sea-level z*. The loci of thermodynamic states for a typical
cumulus (cu) and also for the undiluted core of a cumulonimbus (cb)
are also noted; the locus (cb) is that appropriate for moist-adia-
batic ascent of sea-level air. The dashed curve is the typical
ambient referred to in the text: a well-mixed lowest layer, a
midtro~ospheric minimum, and a recovery of sea-level value at alti-
tude zo (defined here to be the tropopause, and typically about
50,000 ft). The quantity H* is the sum of the static enthalpy, the
latent heat equivalent of the water vapor present, and the gravita-
tional potential energy; the quantity c* is the specific heat at
constant pressure, which may be taken to be effectively that of dry
air.
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